
We note that the arguments presented above refer to the case of "strong" nonuniformity, 
when the flow rate changes in the entire region. The local disturbance of the flow rate in 
the end region of the gap, where the gradients are largest, occurs under less rigid conditions 
[8]. 

NOTATION 

h, width of the channel; L, length of the channel; 6 = h/L, relative width of the channel; 
g, thickness of the walls; ~ = g/L, relative thickness of the walls; p, gas pressure; Pe, 
saturation pressure; ~ = Pe - P, pressure drop; T, temperature; To, temperature of the evapor- 
ation surface; Q, heat of evaporation; Q = Q/RT, dimensionless heat of evaporation; p, viscos- 
ity of the gas; %, thermal conductivity of the gas; %T, thermal conductivity of the solid phase; 
q, heat flux; J, mass flow rate~ a, velocity of sound; M, Mach's number; Re, Reynold's number; 
Kn, Knudsen number; and H~ and Hp, dimensionless complexes. 
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LIMITING SOLUTION OF A DIFFUSIONAL PROBLEM IN PRISMATIC TUBES 

A. I. Moshinskii UDC 532.72 

The limiting solution of the convective-diffusion equation is investigated in chan- 
nels close to the tube "axis," i.e., the line at which the liquid flow rate takes 
on a maximum value. 

The solution of heat- and mass-transfer problems in prismatic tubes, even when the tubes 
are linear, entails well-known difficulties when using the methods of mathematical physics 
[i]. In connection with this, approximate methods are widely used: numerical methods [2], 
variational and projectional methods [3], methods based on introducing an effective (Taylor) 
diffusion coefficient [4], and various modifications and improvements of these [5-7]. 

In the present work, small-perturbation theory is used to investigate a characteristic 
solution of the problem of impurity propagation in prismatic tubes at large Peclet numbers. 
The behavior of the impurity concentration around the tube axis is of interest here. The 
liquid is assumed to be Newtonian and the liquid flow to be laminar, although the individual 
assumptions of the theory and calculations may simply be extended to more complex cases. 

I. Plane Channel 

Suppose that the liquid is of sufficiently high viscosity that the liquid flow is sta- 
bilized over time and, at the same time, the diffusional process is unstable. The impurity- 
diffusion equation in this case takes the form 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 52, No. i, pp. 122-131, January, 
1987. Original article submitted October 8, 1985. 
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Reducing Eqs. 

ac/at § u ( 1 - -  Y~lh ~) ac /oz  = Do~c/oYL ( 1 ) 

and here, as is often the case, the terms 32C/3Z 2 are neglected in comparison with 82C/8Y z. 
The additional conditions assumed are as follows 

Clt=o = 0, CIz=0 = Co, OC/OYIv=o,• = O. (2) 

(1) and ( 2 ) t o  d imens ion le s s  form by the  t r a n s f o r m a t i o n  

t = r h / u ,  Z = z h ,  Y = y h ,  C = c C o ,  e = l / P e = D / u h  (3) 

gives 

OclOv -I- ( 1 - -  y 2) Oc/Oz = eOiclOy ~, ( 4 ) 

c[~=0 = 0, c[~=0 = 1, Oc/Og[y=o,~1 = 0. (5) 

If e tends to zero in Eq. (4), the equation of the external problem is obtained 

acla~ + (1 - -  y~) OclOz = O, ( 6 )  

with the following solution satisfying the first two conditions in Eq. (5) 

c = H l~ - -  zl(1 - - / ) ] ,  (7) 

where H(z) is the Heaviside function. The diffusion coefficient drops out of the solution 
obtained completely. However, at sufficiently large times, when the region of nonzero con- 
centration bounded by the parabola z = z(l - yi) becomes thin close to the vertex of the para- 
bola, it is incorrect to neglect the diffusional term. The physical picture will correspond 
to the propagation of a diffusional jet along the channel axis. Correct description of the 
process at such times entails considering the internal problem [8], while retaining both dif- 
fusional and convective terms in the equation. 

Passing to the coordinate system �9 = ~, ~ = �9 - z which moves at velocity u, and then 
to the internal coordinates N = y/el/~, T = ~ei/2, the parameter ~ "disappears" from Eq. (4) 

Oc/OT + ~fOclO~ = O~clOqt (8 )  

Equat ion (8) de te rmines  the  d i f f u s i o n a l  process  c lo se  to  the  channel  a x i s .  A d d i t i o n a l  con- 
d i t i o n s  a re  ob t a ined  from the  t h i r d  c o n d i t i o n  of  Eq. (5) and by means of matching wi th  the  
s o l u t i o n  of  t he  e x t e r n a l  problem in Eq. (7) 

Or cl~ ~ 0 ,  c l r = o = l ,  cl~=0=0. (9) 

We consider $ in the region (0, ~). When ~ < 0, the solution of Eq. (8) is identically 
zero. In view of the problem's symmetry relative to the line q = 0, ~ is assumed to be vary- 
ing in the region (0, ~). Note that Eq. (8) is intermediate in character, i.e., decribes 
the local solution of the initial problem in the time range O(i/e I/2) < �9 < 0(i/~), where 
the lower bound is determined by the transformation T = ~e I/2 and the upper bound by the con- 
dition of diffusional "spreading" of the initial concentration perturbation over the whole 
region U (it is sufficient that the boundaries Y = • exert a considerable influence on the 
solution fo the internal problem). 

A Laplace transformation with respect to the variable g is applied to Eq. (8) and the 
additional condition in Eq. (9) (quantities in the space of the mappings are denoted by an 
asterisk) 

Oc*/aT -§ p~c* = a~c*/a~, , 
�9 = 1/p.  C ]T~O Oc*la~]~= o = 0 ,  c l~.~-+O, * 

Equat ion (10) admits  of  v a r i a b l e  s e p a r a t i o n .  The s o l u t i o n  of  Eqs. 
by the  F o u r i e r  method i s  

c* = ].r~ ~ exp [-- (4n --', I) Tp 1/2 __ ~12pl I~i21 Hz~ (~pl/4)i4n n! = 

p 
n=0 

(12) 
_ ]ZY exp [ _ T 1 / ~ - +  N~]fP ~l~]'rF ] / [ i + e x p ( _ 4 T l r ~ ) ] ~ ! ~  

p 2 1 ~- exp (---4T ~, p) ' 

(i0) 

( l l )  
(i0) and (ii) obtained 

where H2n(Z) are Hermite polynomials. 

i00 



The total amount of impurity in some cross section g is now found, by integrating Eq. 

(12) with respect to ~ over the limits (0, ~) 

i (a/2) ~/z l/~- ~ (2n)! exp[--T/p- (4n+ 1)l (13) 
Q* = , c * d ~ ] =  p ~ / 4 [ s h ( 2 T V F ) ] I / 2  - p5/4 ~ (n!)~ - -  4 ~ 

0 n~O 

Term-by-term manipulation of the series in Eq. (13) leads to the need to calculate an 
integral of the form 

1 f e x p ( p x - - ! ] l ' p )  dp, (14) 
K(x, g ) =  2~---~., p5/4 

L 

where  t h e  i n t e g r a t i o n  i s  t a k e n  o v e r  t h e  s t r a i g h t  l i n e  Re p = a ,  ~ > 0. I t  i s  r e a d i l y  e v i d e n t  
t h a t  t h e  f u n c t i o n  K s a t i s f i e s  t h e  h e a t - c o n d u c t i o n  e q u a t i o n  aK/ax = a i K / a y  2 and i t  i s  a s e l f -  
s i m i l a r  s o l u t i o n  o f  t h e  form K(x ,  y)  = x l / 4 G ( y / 2 v / x ) .  Hence an o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  
s a t i s f i e d  by t h e  f u n c t i o n  G ( v ) ,  v = y / 2 ~  i s  f o u n d :  

6~v + 2vG; = G, a (0) ---- 1/r (5/4), G' (0) = - -  2/F (3/4). (15)  

The s o l u t i o n  o f  Eq. (15)  may be e x p r e s s e d  in  t e r m s  o f  a d e g e n e r a t e  h y p e r g e o m e t r i c  f u n c t i o n  
o f  t h e  f i r s t  k i n d  F ( a ,  ~, z)  [9] 

( ,  )/ (+ )/ 6 ( v ) = F  - - - - 4  ' 2 ' - -  v~ F(5/4) - - 2 v F  , 2 , v ~. F(3/4). (16)  

Using well-known [9] expansions for degenerate hypergeometric functions, the result obtained 
is 

GCv) = Z ( - -  l)n (2v)'~ "r (17) 
n! r (5/4 - -  n/2) 

n=0 

where the series converges at all v and is convenient at small v and the second relation is 
an asymptotic formula suitable for calculations as v + ~ (Fig. i, curve i). The expression 
for Q may now be written in the form 

(2n)~ G [ T ( 4 n +  1)/2 ]/~-I 
4" (18) 

n = 0  

Using a s y m p t o t i c  Eq. (17)  and t h e  S t i r l i n g  f o r m u l a ,  i t  may be shown t h a t  t h e  s e r i e s  in  Eq. 
(18)  c o n v e r g e s  when T / / ~  > 0. As T / / ~  + ~, l e a v i n g  one t e rm in t h e  s e r i e s ,  an a s y m p t o t i c  
f o r m u l a  i s  o b t a i n e d  

Q ~ 4  1 / 2  ~ e x p ( - - T " / 4 ~ ) / T  */2, T'-/~---,-oo. (19)  

The e x p a n s i o n  in  Eq. (18)  i s  c o n v e n i e n t  f o r  c a l c u l a t i o n s  a t  l a r g e  T/v/~. Using Eq. ( 1 3 ) ,  
a t h e o r e t i c a l  r e l a t i o n  i s  a l s o  o b t a i n e d  f o r  s m a l l  T/v/~. 

The s i n g u l a r  p o i n t s  o f  t h e  f u n c t i o n  Q* a r e  b r a n c h  p o i n t s  Pk = - ( ~ k ) 2 / 4 T f ,  k = 0, 1, 
2, . . .  ; t h e  f u n c t i o n  Q* i s  u n i q u e  in  t h e  p l a n e  c u t  a l o n g  segments  o f  t h e  r e a l  a x i s  c o n n e c t i n g  
t h e  p o i n t s  P0 and P l ,  P2 and P3, e t c .  ( F i g .  2 ) .  The Cauchy t h e o r e m  i s  a p p l i e d  t o  t h e  i n t e -  
g r a l  o f  t h e  f u n c t i o n  Q* exp (p~)  o v e r  t h e  c o n t o u r  in  F ig .  2. The c i r c l e  o f  l a r g e  r a d i u s  R N 
intersects the real axis at the points R N = -(~/2 + 2nY)2/4T 2, and Ish-i/2(2T/p)l -5 1 over 
the whole line ~RN; therefore, taking account of the factor p-S/4, the Jordan lemma may be 
applied to the integral over the system of contours ~R N as N § ~. For all points Pk, except 
P0, the integrals over the small circles YPk as Pk ~ 0 (k = i, 2, 3, ...) also tend to zero; 
therefore passing to the limit as N § ~, Pk ~+ 0 in the Cauchy and Riemann-Mellin theorems 
leads to the expression (r = g/4T 2) 

= (ikq-l)~ 2 

~ = ~ p 5/4 ~sh-V~ 5 (__ |)k exp(__r~)dr/rS/4 VsinVr , (20) 

where z is a loop covering the points p = 0 and p = __~2 (Fig. 2). At large ~, Laplace asymp- 
totic method [i0] may be applied to the integral in the summation; it is then found that these 
integrals are exponentially small as ~ + ~; this indicates good convergence of the series 
in Eq. (20). Therefore, the basic (algebraic) contribution to the asymptotic expansion of Q 
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Fig. i. Graph of the functions: i) G = F(y/v~x) 
according to E!l. ( 1 7 ) ;  2)_QV'T--7$" = F(T/~); 3 )  
4QiTi/u/~C0hm/D = F(2Ti/v/m); the first quantity 
is plotted along the ordinate and the second (in 
parentheses) along the abscissa. All the quan- 
tities are dimensionless. 

will be given by the vicinity of the point p = 0. Suppose that bk, k = 0, i, 2, ..., are 
coefficients of the expansion in Maclaurin series of the analytical function [~p/sh~p] z/2 
(b 0 = i, b I = -1/12, and so on). The integration contour ~ is replaced by • departing to 

The an infinitely remote point over both sides of the negative real semiaxis of the plane p. 
distortion introduced here is negligibly small. Using the well-known Hankel formula [10] 
for the function i/F(z), an asymptotic expansion is obtained 

1 / z T  h=o 2;tf  . p3/e-k  
z t  h : O  

(2l) 

It is evident from Eq. (21) that Q § ~ as T + 0 (~ ~ 0), as would be expected on the basis 
of Eq. (13). This is because the integral with respect to n is taken with an infinite upper 
limit, in order to simplify the calculation of Q; with the initial condition in Eq. (9), this 
must lead to an infinite value of Q. In reality, the upper limit is large (of the order of 
e -I/") but not infinite. This simplification becomes more accurate as T increases. This 
is one more reason why the solution is applicable at sufficiently large times. 

II. Channel Bounded by a Clos@d Curve of Arbitrary Form 

As is known, the velocity profile of liquid flowing in a prismatic channel is described 
by the solution of the equation Av = -P/s with zero boundary condition at the contour. The 
function v is superharmonic and therefore must exceed the solution of the Laplace equation 
for the same region and the same boundary condition, i.e., v ~ 0 everywhere in the channel. 
The case v ~ 0 is impossible. From the Weierstrass theorem, it follows that the function v 
attains a maximum at some internal point. If there are several points of maximum v, the 
liquid flow in the vicinity of one of these is considered. 

The velocity profile in the vicinity of the maximum point is determined in Cartesian 
coordinates of negative-definite quadratic form, which in the principal axes may be written 
in the form v = u(l - x2/h~ - y2/h~), where the x and y axes are orthogonal. As before, 
passing to a moving coordinate system, the following internal equation is obtained for the 
impurity concentration 

ao/~t ~ ~.(x~/h~ ~ u-/a2) oc/am : D(O2c/ax ~ ~ a~o/aF~). ( 2 2 )  

The external solution has a structure similar to Eq. (7); therefore, the following addi- 
tional conditions apply 

cll=o = 1, clm=o : O, c]x,w --+0; Oc/Oxlx=o : O, ac/O~lv= o : 0 .  ( 2 3 )  

Equation (22), describing the impurity propagation close to the tube axis, may also 
be applied in more complex cases, i.e., with additional conditions not in the special form 
of Eq. (23) but with some number of arbitrary functions. Note that, with usual conditions 
of the first, second, and third kind at the planes x = 0 and y = 0, and inhomogeneous condi- 
tions when m = 0 and t = 0, the solution of Eq. (22) is found by the method of [ii]. Laplace 
transformation with respect to the variable m is first applied, and then transformation with 
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P, 

Fig. 2. Integration contour. 

respect to the eigenfunctions of the equation DX" = (ux2/h~ - In)X with the corresponding 

boundary conditions, where the transformation with respect to the variables x and y may be 
taken in any sequence. The resulting ordinary differential equation in terms of time-dependent 
functions is easily solved, and inverse integral transformations are then undertaken. 

It follows from the first three conditions in Eq. (23) that the solution of Eq. (22) 
is an even function of the variables x and y. Therefore, the last two conditions in Eq. (23) 
are actually a consequence of the first three and the structure of Eq. (22), i.e., a region 
x, y e [0, ~) may be considered, as in the plane problem. 

Applying a Laplace transformation with respect to m to Eq. (22) gives 

Oc*/Ot + u (x~/h~ +//h~)  pc* = D (02c*/Ox 2 + 02c*/0y~ (24) 

With the additional conditions in Eq. (23), as a result of direct verification, it may be 
ess that the solution of Eq. (24) is c* = r t)r t), where ~* satisfies (with 
insignificant scale changes) the problem in Eqs. (i0) and (ii) for the plane case. Therefore, 
the final results of Sec. I may be used and formulas corresponding to Eq. (13) may be intro- 
duced at once 

i f  zl(Dh~h~/u)l/2 ~(Dlhh~)l/2• 
Q1 = c*dxdy --= 2P 312 [sh(2T1 VP) sh(2r2 V'p)] '/2 = l /u /#  

0 0 

00 

• ~ ,  (2n)l(2k)! exp{--[T~(4n+ 1 ) + T ~ ( 4 k +  1)] V-~-}, (25) 
~,~-o~ (hi) 2 (kl) ~ 4~+h 

TI,2 = t(Du)II2 
hi ,2 

It is known that 

2 ] / x  ierfc 9 . = 2  exp - - ~  --verfc  9 - -  
2 V s  2 Vs 

1 ~ exp (px-- V If'P) dp, 2hi .J p3/e 
L 

eric(z) = (2/}/~) ~ exp(~ t 2) dt is an additional probability integral. where 
2 

manipulation of the series in Eq. (25), the following expression is obtained 

Q~ = 2= (Drnh~h2) 1/2 ~ (2n)l (2k)! ierfc {[T~ (4n + 1) + T2 (4k + 1)]/2 V'm}. 
1,~1/2 (n!)2 (k!)2 4 .+k 

n ,k=O 

R e t a i n i n g  t h e  f i r s t  t e rm a t  l a r g e  T1 ,2 / /m  and u s i n g  t he  a s y m p t o t i c  fo rmula  f o r  
a b i l i t y  i n t e g r a l  [9 ] ,  t he  f o l l o w i n g  a s y m p t o t i c  r e l a t i o n  i s  o b t a i n e d  f o r  Q/: 

4 (z~Dhlh~m 3)t / 2 
QI'." ul/2(Tl+ T2)2 exp[--(Tl+ T2)~/4m], TI+ T2 

After term-by-term 

(26) 

the prob- 

(27) 

(28) 
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The behavior of Qz as T~,~/~m + 0 is determined by the residue of Q~* exp (mp) at the 
point p = 0 and takes the form 

Q1 = ah~h~ Ira-- (r~ -}- T~),/3]/2ut, T~,~/m--. O. (29) 

The particular case h~ = h 2 = h is of interest; it is realized, for example, in a cir- 
cular channel and a channel bounded by the sides of a regular polygon. Here Tz = T 2 and Eq. 
(25) may be represented by a series 

OT=lah (O/u) ~/~ = o,5/p a/~ sh (2T, F 'P)  -- ~ exp [-- 2T, (2n + 1) ] /pl lp  a/~, (30) 
lZ~  0 

manipulation of which gives the expression 

Ql-= 2nh (Din~u) 1/2 "%~ ierfc [T1 (2n + 1)/I/m], 
It---0 

(3l) 

which is convenient at large 
the integral of the function 
singular points are the same 

T1/~m. By the usual methods, applying the residue theorem to 
QI* exp (mp) over the contour L, R N (N + ~) in Fig. 2 (the 
as in the case of Eq. (13) except that now they are poles), the 

(-- lJh exp , (32) 
J 

The results of calculations by Eqs. 

following expression may be obtained 

QdahTl(D/u)l/~=--4Tlm ____61 ~' n 22 Zh=l 

which is convenient for calculations at small Tl/Vm. 
(31) and (32) are illustrated in Fig. 1 (curve 3). 

Remember that in view of the symmetry only a quarter of the flow region close to the 
tube axis is considered here. To obtain the total amount of impurity in the channel, the 
right-hand side of Eqs. (27)-(29), (31), and (32) must be multiplied by four. 

III. Determining the Constants hz,2 and the Maximum Velocity u 

To employ the relations obtained in Sec. II, three parameters of the velocity profile 
must be determined in the vicinity of the maximum-velocity point: hz, 2 and u. Equations may 
be obtained for determining these quantities under the condition that the function performing 
conformal mapping of the region bounded by the channel contour onto a unit circle is known: 
z = f(~), z = x + iy, ~ = ~ + iN. Without loss of generality, the constant right-hand side 
of the Poisson equation for the function may be regarded as equal to -2. The function v is 
sought in the form v = w - x 2 - yZ, where the function w is harmonic and satisfies the condi- 
tion w = x 2 + y2 = if21 at the channel contour (a unit circle in the ~ plane). As is known, 
conformal mapping of singly connected regions is determined with an accuracy of up to three 
real parameters. In the present case, a general formula of the form f(r), r - exp (i~)(~ - 
a)/(l - a~) may be obtained from the function f, where the complex number a = ~ + iF [i0] 
determines the coordinate of the center of the circle of plane r in plane ~. The third param- 
eter ~ determines the rotation of the circle. It is significant in choosing the principal 
axes of the quadratic form of the velocity profile; then ~ = 0 is assumed, and the function 
w in the plane ~ is assumed to depend on the two real parameters ~ and ~, which are ordered 
so that some point of velocity maximum falls at the coordinate origin of the ~ plane. The 
value of w at the contour of the circle is denoted by m(~, ~, ~ ), where ~ is the polar angle. 
Then the Fourier method leads to the result 

where 

r 

v = -- Ill ~" + ao -) al~ -F dl a] -- Z rn [an cos (nqo) q- dn sift (nrf)l, 
r t = 2  

2,"r 2 ~  

ao--- -f~-- (,)(~z, 1~, qO dq~; a,, = - - a  co(e, [3, q~)cos(nq~)~/qo; 
0 0 

(33) 

2 ~  

a,, = 1--k'a f co (~, 13, r sin (ncp) ctq~, 
0 

n = l ,  2, 3 . . . .  ; r = (~ + n') '/~ 
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Suppose that the expansion of Ifl 2 in Maclaurin series takes the form 

][1 s = loo + ~llO + ~/oI + ~2120 + 2~111 + ~2lo2 + . . . .  (34) 

where all the functions s ai, and di depend on ~ and ~. Then, choosing ~ and $ such that 
the conditions 

a1=11o, dl= lo t  (35) 

are satisfied, it may be arranged that the point ~ = 0, ~ = 0 is stationary for the function 
v. The quadratic form for the velocity profile is now determined by the expression 

~ (as - -  13o) - -  ~2 (as + lo~) + 2~q (d2 - -  ln) ,  ( 3 6 )  
which  must  be d i v i d e d  by ] f ' ( 0 ) l  a in  t h e  p l a n e  z on p a s s i n g  t o  t h e  c o o r d i n a t e s  x and y in  
the vicinity of the maximum-velocity point, in view of the conformity of the mapping. The 
choice of principal axes in the z plane and the determination of hl, 2 from the expression 
obtained are not difficult. The existence of a solution of Eq. (35) follows from general con- 
siderations; see Sec. II. Note, however, that it is not necessarily unique and in addition 
the quadratic form of Eq. (36) obtained may be indeterminate. This may be understood intui- 
tively if the channel profile is taken in the form of two identical circles connected by a 
narrow neck, so that the whole figure is symmetric. Then, approximately at the center of 
each circle, there is a velocity maximum (nonuniqueness) and at the center of the whole 
figure there is a saddle point (indefinite quadratic point). For channels where the velocity 
profile is unknown (circle, ellipse, equilateral triangle, etc~ determining the parameters 
hl, 2 and u is simpler and often does not pose any difficulties. Note also that, in view of 
the application of the equation &v = -2 to a broad range of elasticity-theory problems (rod 
torsion, membrane flexure) and in other fields, Eq. (35) and the other results of Sec. III 
are of definite importance also in these areas of mathematical physics. 

The value of u is found from Eq. (33) by the substitution ~ = 0, N = 0: 

U = (a o - -  ~o) P/2lt~,  ( 3 7 ) 

where  t h e  v a l u e s  o f  a and ~ found  f rom Eq. (35)  must  be u sed .  

As an example  o f  f i n d i n g  h~,  2 and u,  c o n s i d e r  l i q u i d  f l o w  in  a r e g i o n  bounded by a s i n g l e  
loop of the Bernoulli lemniscate, defined by the equation: (x 2 + y2)2 = 2(x 2 _ y2). As is 
known [i0], a branch of the lemniscate is mapped onto a circle of unit radius by the function 
z = /~ + i. In the view of the lemniscate symmetry with respect to the y axis, it is clear 
that the maximum-velocity point has the coordinate y = 0 and the parameter B must be set 
equal to zero. Thus, the mapping function must be taken in the form 

z = [(I--~)(g + I)/(I __~$)]~2, ~6[0, I),] (38) 

and hence it is simple to find the function w(~, 0,~ ) = 2(1 - ~)Icos(~/2)[/(l - 2~ cos~ + 
~2)i/2. In addition, it is known that d i = 0, i = i, 2, 3, ...; ~00 = 1 - ~; s = 1 - ~2; 
~01 = 0; s = 1.5~2 (i - ~); s = 0; s = 0.5 (i + ~)(I - ~)2 Calculating the integral 
al, an equation for determining ~ is obtained from the first relation in Eq. (35) (the second 
is satisfied identically 0 = 0): 

~ ( 1 + ~ )  = ( R + - - ~ - ) l n ( R + V ' R - ~ §  R =  2 ] / ~  
2(I  - - ~ )  ' 1 _----Z'~ ' ( 39 )  

which has the single root ~ = 0.3430 in the interval ~ ~ [0, i). The integrals ~0 and ~2 
are also calculated analytically and, when ~ = 0.3420, take the values: a0 = 0.9584; a2 = 
-4.6054. Hence using Eq. (37), the maximum value u = 0.1507P/s is determined and then, from 
Eq. (36) - the form of Eq. (36) has already been obtained in the principal axes - the param- 
eters h I and h2 are found: h I = 0.2620; h 2 = 0.2505. The coordinate of the maximum-velocity 
point is found from Eq. (38) by substitution of the condition ~ = 0: x = 0.8105. The param- 
eter values obtained may easily be recalculated for a lemniscate of more general form in- 
cluding some dimensional parameter. It is noteworthy that the desired parameters are dimen- 
sional in the given example. 

Note, in conclusion, that, although additional conditions in Eq. (5) of particular form 
have been used, the actual solution of the internal problem is more general. For example, 
in the case of the general condition C[z= 0 = c,(y, ~), the result obtained for a function 
c,(y, ~) of sufficiently broad form in the internal variables is: Clz= 0 = c,(0, ~) = const, 
which coincides with the corresponding condition in Eq. (5). 
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NOTATION 

C, c, dimensional and dimensionless impurity concentrations; Co, initial concentration; 
D, impurity-diffusion coefficient; L, 7R, Xp, parts of integration contour; s ai, di, 
coefficients in the expansion of the functions w = v + x 2 + y2 and Ifl 2 in the corresponding 
series of Eqs. (33) and (34); m = ut - z, dimensional coordinate of the moving coordinate 
system; h, halfwidth of the channel in plane problem; hl, h2, coefficients in the quadratic 
form of the velocity profile; Q, amount of impurity in some cross section of the channel per 
unit area; QI, amount of impurity per unit length in the three-dimensional case; P/Z, pres- 
sure difference per unit length of channel; p, Laplace-transformation variable; T, ~, in- 
ternal variables; t, time; u, maximum value of the velocity; Z, Y, Cartesian coordinates 
longitudinal and transverse to the flow; v, liquid velocity in channel; ~ = ~ - z, variable 
in coordinate system moving at velocity u; ~, viscosity of liquid; F(x), Euler gamma func- 
tion. 
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SOLUTION OF THE CONVERSE THERMAL CONDUCTIVITY PROBLEM WITH 

CONSIDERATION OF THE PERTURBING INFLUENCE OF THE THERMOCOUPLE 

S. L. Balakovskii and E. F. Baranovskii UDC 536.24 

Questions involving the use of an adequate model for temperature measurement in 
solving converse thermal conductivity problems are considered. 

Methods for solution of converse thermal conductivity problems are one of the most pro- 
mising means for adequate processing of data in thermophysical experiment. At the present 
time a number of highly effective methods have been developed for solution of such problems 
[i], although the majority of these can be used only under conditions where the perturbing 
action of thermocouples on heat propagation in the body under study can be neglected. In 
many cases of practical importance the effect of thermocouples is quite significant [2-5]. 

In particular, this is true in the study of processes of casting metals and alloys or 
in temperature measurements in a cutting instrument where the dimensions of the thermocouple, 
its insulation, and the channel in which these are located are comparable to the distances 
to the heat source and the area of the surface upon which it acts. In such cases the temper- 
ature sensor must be considered as an independent body with its own thermophysical and geo- 
metric characteristics, actively participating in heat exchange with the surrounding object. 
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